7 research outputs found

    Ripple Texturing of Suspended Graphene Atomic Membranes

    Full text link
    Graphene is the nature's thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphene's thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure

    In Situ Observation of Electrostatic and Thermal Manipulation of Suspended Graphene Membranes

    No full text
    Graphene is natureā€™s thinnest elastic membrane, and its morphology has important impacts on its electrical, mechanical, and electromechanical properties. Here we report manipulation of the morphology of suspended graphene via electrostatic and thermal control. By measuring the out-of-plane deflection as a function of applied gate voltage and number of layers, we show that graphene adopts a parabolic profile at large gate voltages with inhomogeneous distribution of charge density and strain. Unclamped graphene sheets slide into the trench under tension; for doubly clamped devices, the results are well-accounted for by membrane deflection with effective Youngā€™s modulus <i><i>E</i> = </i>1.1 TPa. Upon cooling to 100 K, we observe buckling-induced ripples in the central portion and large upward buckling of the free edges, which arises from grapheneā€™s large negative thermal expansion coefficient
    corecore